Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Rapid Meshing for CFD Simulations of Vehicle Aerodynamics

2009-04-20
2009-01-0335
To-date the primary challenge in conducting aerodynamic CFD simulations of actual vehicles with realistically complex geometry has been the construction of a computational mesh. The CAD-to-Mesh processes used to-date have been laborious, often requiring many weeks of engineering time. In this paper we present a new technique to greatly expedite the CAD-to-Mesh process. The fundamentals of this technique are discussed followed by case studies that show that this technique can reduce the engineering time required for the CAD-to-Mesh process to just a few hours.
Journal Article

Enhanced Durability of a Cu/Zeolite Based SCR Catalyst

2008-04-14
2008-01-1025
Passenger and light duty diesel vehicles will require up to 90% NOx conversion over the Federal Test Procedure (FTP) to meet future Tier 2 Bin 5 standards. This accomplishment is especially challenging for low exhaust temperature applications that mostly operate in the 200 - 350°C temperature regime. Selective catalytic reduction (SCR) catalysts formulated with Cu/zeolites have shown the potential to deliver this level of performance fresh, but their performance can easily deteriorate over time as a result of high temperature thermal deactivation. These high temperature SCR deactivation modes are unavoidable due to the requirements necessary to actively regenerate diesel particulate filters and purge SCRs from sulfur and hydrocarbon contamination. Careful vehicle temperature control of these events is necessary to prevent unintentional thermal damage but not always possible. As a result, there is a need to develop thermally robust SCR catalysts.
Journal Article

Dynamic Modeling of Fuel Cell Systems for Use in Automotive Applications

2008-04-14
2008-01-0633
This paper describes a proton-exchange-membrane Fuel Cells (FC) system dynamic model oriented to automotive applications. The dynamic model allows analysis of FC system transient response and can be used for: a) performance assessment; b) humidification analysis; c) analysis of special modes of operation, e.g., extended idle or freeze start; d) model based FC control design and validation. The model implements a modular structure with first principle based components representation. Emphasis is placed on development of a 1-D membrane water transport model used to simulate gas to gas humidification and stack membrane water diffusion. The Simulink implementation of the model is discussed and results showing FC system transient behavior are presented.
Journal Article

The Use of Physical Props in Motion Capture Studies

2008-06-17
2008-01-1928
It is generally accepted that all postures obtained from motion capture technology are realistic and accurate. Physical props are used to enable a subject to interact more realistically within a given virtual environment, yet, there is little data or guidance in the literature characterizing the use of such physical props in motion capture studies and how these effect the accuracy of postures captured. This study was designed to evaluate the effects of various levels of physical prop complexity on the motion-capture of a wide variety of automotive assembly tasks. Twenty-three subjects participated in the study, completing twelve common assembly tasks which were mocked up in a lab environment. There were 3 separate conditions of physical props: Crude, Buck, and Real. The Crude condition provided very basic props, or no props at all, while the Buck condition was a more elaborate attempt to provide detailed props. Lastly, the Real condition included real vehicle sections and real parts.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Cross-Section Optimization for Axial and Bending Crushes Using Dual Phase Steels

2008-04-14
2008-01-1125
To achieve optimal axial and bending crush performance using dual phase steels for components designed for crash energy absorption and/or intrusion resistance applications, the cross sections of the components need to be optimized. In this study, Altair HyperMorph™ and HyperStudy® optimization software were used in defining the shape design variables and the optimization problem setup, and non-linear finite element code LS-DYNA® software was used in crush simulations. Correlated crash simulation models were utilized and the square cross-section was selected as the baseline. The optimized cross-sections for bending and axial crush performance resulted in significant mass and cost savings, particularly with the application of dual phase steels.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Journal Article

Research for Brake Creep Groan Noise with Dynamometer

2012-09-17
2012-01-1824
This paper deals with creep groan noise in vehicles which is a low frequency vibration problem at 20∼500Hz that appears in low brake pressures and extremely low speed especially in automatic transmission car, where there is a transition from static to dynamic condition. The vibration causing the noise is commonly thought to result from friction force variation between brake disc and pad in stick-slip phenomena. Simulation results are confirmed through dynamometer testing. Then presented noise contribution factor analysis by experimental approach between chassis components.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
Technical Paper

Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles

2020-04-14
2020-01-0105
With the rapid development of artificial intelligence, the autonomous vehicles (AV) have attracted considerable attention in the automotive industry. However, different factors negatively impact the adoption of the AVs, delaying their successful commercialization. Accretion of atmospheric icing, especially wet snow, on AV sensors causes blockage on their lenses, making them prone to lose their sight, in turn, increasing potential chances of accidents. In this study, two different designs are proposed in order to prevent snow accretion on the lenses of AVs via air flow across the lens surface. In both designs, lenses made of plain glass and superhydrophobic coated glass surfaces are tested. While some researchers have shown promise of water repellency on superhydrophobic surfaces, more snow accretion is observed on the superhydrophobic surfaces, when compared to the plain glass lenses.
Journal Article

Gasoline Anti-Knock Index Effects on Vehicle Net Power at High Altitude

2017-03-28
2017-01-0801
Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
Journal Article

Tier 2 Test Fuel Impact to Tier 3 Aftertreatment Systems and Calibration Countermeasures

2018-04-03
2018-01-0941
During the course of emissions and fuel economy (FE) testing, vehicles that are calibrated to meet Tier 3 emissions requirements currently must demonstrate compliance on Tier 3 E10 fuel while maintaining emissions capability with Tier 2 E0 fuel used for FE label determination. Tier 3 emissions regulations prescribe lower sulfur E10 gasoline blends for the U.S. market. Tier 3 emissions test fuels specified by EPA are required to contain 9.54 volume % ethanol and 8-11 ppm sulfur content. EPA Tier 2 E0 test fuel has no ethanol and has nominal 30 ppm sulfur content. Under Tier 3 rules, Tier 2 E0 test fuel is still used to determine FE. Tier 3 calibrations can have difficulty meeting low Tier 3 emissions targets while testing with Tier 2 E0 fuel. Research has revealed that the primary cause of the high emissions is deactivation of the aftertreatment system due to sulfur accumulation on the catalysts.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Journal Article

Benefits of Pd Doped Zeolites for Cold Start HC/NOx Emission Reductions for Gasoline and E85 Fueled Vehicles

2018-04-03
2018-01-0948
In the development of HC traps (HCT) for reducing vehicle cold start hydrocarbon (HC)/nitrogen oxide (NOx) emissions, zeolite-based adsorbent materials were studied as key components for the capture and release of the main gasoline-type HC/NOx species in the vehicle exhaust gas. Typical zeolite materials capture and release certain HC and NOx species at low temperatures (<200°C), which is lower than the light-off temperature of a typical three-way catalyst (TWC) (≥250°C). Therefore, a zeolite alone is not effective in enhancing cold start HC/NOx emission control. We have found that a small amount of Pd (<0.5 wt%) dispersed in the zeolite (i.e., BEA) can significantly increase the conversion efficiency of certain HC/NOx species by increasing their release temperature. Pd was also found to modify the adsorption process from pure physisorption to chemisorption and may have played a role in the transformation of the adsorbed HCs to higher molecular weight species.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
X